
Running Multiple Serial Jobs to Reduce Walltime

Category: Effective Use of PBS

DRAFT

This article is being reviewed for completeness and technical accuracy.

On Pleiades, running multiple serial jobs within a single batch job can be accomplished with
following example PBS scripts. The maximum number of processes you can run on a single
node will be limited to the core-count-per-node or the maximum number that will fit in a
given node's memory, whichever is smaller.

processor type cores/node available memory/node
 Harpertown 8 7.6 GB
 Nehalem-EP 8 22.5 GB
 Westmere-EP 12 22.5 GB

The examples below allow you to spawn serial jobs accross nodes using the mpiexec
command. Note that a special version of mpiexec from the mpi-mvapich2/1.4.1/intel module
is needed in order for this to work. This mpiexec keeps track of $PBS_NODEFILE and
places each serial job onto the CPUs listed in $PBS_NODEFILE properly. The use of the
arguments "-comm none" for this version of mpiexec is essential for serial codes or scripts.
In addition, to launch multiple copies of the serial job at once, the use of the
mpiexec-supplied $MPIEXEC_RANK environment variable is needed to distinguish
different input/output files for each serial job. This is demonstrated with the use of a
wrapper script "wrapper.csh" in which the input/output identifier (i.e., ${rank}) is calculated
from the sum of $MPIEXEC_RANK and an argument provided as input by the user.

Example 1:

This first example runs 64 copies of a serial job, assuming that 4 copies will fit in the
available memory on one node and 16 nodes are used.

serial1.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=16:ncpus=4
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

Running Multiple Serial Jobs to Reduce Walltime 1

mpiexec -comm none -np 64 wrapper.csh 0

wrapper.csh:

#!/bin/csh -f
@ rank = $1 + $MPIEXEC_RANK
./a.out < input_${rank}.dat > output_${rank}.out

This example assumes that input files are named input_0.dat, input_1.dat, ... and that they
are all located in the directory where the PBS script is submitted from (i.e.,
$PBS_O_WORKDIR). If the input files are in different directories, then wrapper.csh can be
modified appropriately to cd into different directories as long as the directory names are
differentiated by a single number that can be obtained from $MPIEXEC_RANK (=0, 1, 2, 3,
...). In addition, be sure that wrapper.csh is executable by you and you have the current
directory included in your path.

Example 2:

A second example provides the flexibility where the total number of serial jobs may not be
the same as the total number of CPUs requested in a PBS job. Thus, the serial jobs are
divided into a few batches and the batches are processed sequentially. Again, the wrapper
script is used where multiple versions of the program "a.out" in a batch are run in parallel.

serial2.pbs:

#PBS -S /bin/csh
#PBS -j oe
#PBS -l select=10:ncpus=3
#PBS -l walltime=4:00:00

module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

This will start up 30 serial jobs 3 per node at a time.
There are 64 jobs to be run total, only 30 at a time.

The number to run in total defaults here to 64 or the value
of PROCESS_COUNT that is passed in via the qsub line like:
qsub -v PROCESS_COUNT=48 serial2.pbs
#

the total number to run at once is automatically determined
at runtime by the number of cpus available.
qsub -v PROCESS_COUNT=48 -l select=4:ncpus=3 serial2.pbs
would make this 12 per pass not 30. no changes to script needed.

if ($?PROCESS_COUNT) then
 set total_runs=$PROCESS_COUNT
else
 set total_runs=64
endif

Category: Effective Use of PBS 2

set batch_count=`wc -l < $PBS_NODEFILE`

set count=0

while ($count < $total_runs)
 @ rank_base = $count
 @ count += $batch_count
 @ remain = $total_runs - $count
 if ($remain < 0) then
 @ run_count = $total_runs % $batch_count
 else
 @ run_count = $batch_count
 endif
 mpiexec -comm none -np $run_count wrapper.csh $rank_base
end

Article ID: 184
Last updated: 03 Aug, 2011
Computing at NAS -> Running Jobs with PBS -> Effective Use of PBS -> Running Multiple
Serial Jobs to Reduce Walltime
http://www.nas.nasa.gov/hecc/support/kb/entry/184/?ajax=1

Category: Effective Use of PBS 3

http://www.nas.nasa.gov/hecc/support/kb/entry/184/?ajax=1

	184.html

